The Dynamical Borel-cantelli Lemma for Interval Maps

نویسندگان

  • Dong Han Kim
  • Lluis Alseda
  • DONG HAN KIM
چکیده

Abstract. The dynamical Borel-Cantelli lemma for some interval maps is considered. For expanding maps whose derivative has bounded variation, any sequence of intervals satisfies the dynamical Borel-Cantelli lemma. If a map has an indifferent fixed point, then the dynamical Borel-Cantelli lemma does not hold even in the case that the map has a finite absolutely continuous invariant measure and summable decay of correlations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalizations of Borel-Cantelli Lemma

The Borel-Cantelli Lemma is very important in the probability theory‎. ‎In this paper‎, ‎we first describe the general case of the Borel-Cantelli Lemma‎. ‎The first part of this lemma‎, ‎assuming convergence and the second part includes divergence and independence assumptions‎. ‎In the following‎, ‎we have brought generalizations of the first and second part of this lemma‎. ‎In most generalizat...

متن کامل

A Borel-cantelli Lemma for Nonuniformly Expanding Dynamical Systems

Let (An)n=1 be a sequence of sets in a probability space (X,B, μ) such that P∞ n=1 μ(An) =∞. The classical Borel-Cantelli lemma states that if the sets An are independent, then μ({x ∈ X : x ∈ An for infinitely many values of n}) = 1. We present analogous dynamical Borel-Cantelli lemmas for certain sequences of sets (An) inX (including nested balls) for a class of deterministic dynamical systems...

متن کامل

An effective Borel-Cantelli Lemma. Constructing orbits with required statistical properties

In the general context of computable metric spaces and computable measures we prove a kind of constructive Borel-Cantelli lemma: given a sequence (recursive in some way) of sets A i with recursively summable measures , there are computable points which are not contained in infinitely many A i. As a consequence of this we obtain the existence of computable points which follow the typical statist...

متن کامل

1 3 A pr 2 00 8 THE DYNAMICAL BOREL - CANTELLI LEMMA AND THE WAITING TIME PROBLEMS

We investigate the connection between the dynamical Borel-Cantelli and waiting time results. We prove that if a system has the dynamical BorelCantelli property, then the time needed to enter for the first time in a sequence of small balls scales as the inverse of the measure of the balls. Conversely if we know the waiting time behavior of a system we can prove that certain sequences of decreasi...

متن کامل

ar X iv : m at h / 06 10 21 3 v 1 [ m at h . D S ] 6 O ct 2 00 6 THE DYNAMICAL BOREL - CANTELLI LEMMA AND THE WAITING TIME PROBLEMS

We investigate the connection between the dynamical Borel-Cantelli and waiting time results. We prove that if a system has the dynamical BorelCantelli property, then the time needed to enter for the first time in a sequence of small balls scales as the inverse of the measure of the balls. Conversely if we know the waiting time behavior of a system we can prove that certain sequences of decreasi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014